2022-01-18 作者 :觉醒网站网 围观 : 0次
大家好,今天小编关注到一个比较有意思的话题,就是关于用什么系统建站的问题,于是小编就整理了1个相关介绍用什么系统建站的解答,让我们一起看看吧。
谢邀!笔者刚签约大数据挖掘工程师岗位,也是在研究生阶段才转为大数据方向。大数据目前正火热,很多同学想要转入,但学习路线对于自学的人来讲因人而异。
拿自身举例,笔者之前是Python数据分析出生,编程能力一般,因此在这个基础上先学习linux基本操作命令,安装ubuntu双系统并进一步安装Hadoop和Spark组件,在此基础上利用Pyspark操作Spark大数据框架进行学习。可以推荐如下书籍:
《Pyspark实战指南》
而要完全进入大数据领域还不够,因为大数据框架比较侧重开发,所以需要有scala语言功底(scala语言是Spark的原生语言),而scala语言跟JAVA关联性很强且完全兼容,所以如果有一定JAVA基础的话完全可以从scala入手,推荐的书籍如下:
《Spark编程基础(scala版)》
视频教程强烈推荐林子雨老师在MOOC慕课上的国家精品免费课程,由浅入深,非常容易上手。
随着互联网的发展,大数据开发是一个比较不错的选择,未来的发展趋势是大数据人工智能,而大数据开发有两个发展方向:一是大数据平台开发,二是大数据应用开发。由于大数据所需要的技术知识比较复杂,想要自学大数据是比较困难的。
其实,零基础小伙伴想学习大数据开发技术,大数据培训是一个比较不错的选择,当然了,小伙伴可以根据自身的基础条件来选择适合自己的学习方式,小伙伴想要自学大数据开发,好的学习路线是必不可少的。
1.学习大数据相关基础知识
学习大数据开发对于零基础小伙伴来讲,在初级阶段肯定是要积累基础知识学习的,学习大数据开发技术知识,需要java、Python等编程语言基础,着几种编程语言都是比较容易入门的。
小伙伴通过什么方式学习基础知识呢?小伙伴可以通过大数据视频的搜索来获取相关视频进行学习,为什么不推荐看书学习呢?在书本上只是学习到了相关的知识结构,并没有大数据视频讲的细致,而且还能做到交叉知识点的讲解。
2.学习相关大数据开发知识
小伙伴学习入门了编程基础,接下来的阶段是相关大数据开发平台的知识学习,建议小伙伴可以从Hadoop和Spark开始学起,这两个平台的应用是比较广泛的。在学习大数据开发过程中,小伙伴还需要了解Linux系统的学习,企业对大数据开发人员的要求是熟练掌握Linux系统。
3.项目实战的练习
小伙伴在学习大数据开发过程中,不能只学习基础知识,更重要的是项目实战案例的练习,小伙伴可以通过项目实战来深入理解大数据开发技术知识。
大数据是一个比较复杂的编程学科,不仅需要有编程基础,还需要有较强的思维逻辑能力能力,是比较适合理工科学习的一项编程技术,当然也并不是说理工科外的小伙伴不能学,两者的差距是接受能力的强弱。尚硅谷大数据培训是全程面授教学,以理论实践相结合的教学方式传授大数据开发技术知识,让小伙伴在学习大数据开发技术知识的同时,积累更多的项目实战经验。
作为一名IT从业者,同时也是一名教育工作者,我来回答一下这个问题。
首先,要自学大数据还是具有一定难度的,大数据不仅内容比较多,难度比较高,同时还需要学习者具有一定的场景支撑,比如数据中心等等,所以初学者自学大数据通常需要按照三个阶段来安排学习计划。
学习大数据的第一个阶段要根据自身的知识基础和发展方向来完成一些基础知识的学习,不论是从事大数据开发还是大数据分析,都需要具有一定的程序设计基础,初学者从Java和Python开始学起都是不错的选择。Java的前期学习难度要大一些,Python则要相对简单一些,而且目前Python语言在大数据领域的应用前景也比较广阔。
学习大数据的第二个阶段是掌握大数据平台的相关知识,大数据领域的诸多岗位任务都离不开大数据平台的支撑,所以学习大数据平台是学习大数据技术的重要环节。学习大数据平台可以从Hadoop和Spark开始学起,一方面这两个平台是开源平台,另一方面这两个平台的应用范围也比较广泛,相关的学习案例也比较多。
相对于编程语言来说,大数据平台的内容相对比较多,而且也具有一定的难度,往往还需要初学者具备一定的Linux操作系统知识,所以如果自身的计算机基础知识比较薄弱,那么也可以从Linux操作系统开始学起。
学习大数据的第三个阶段就是实践阶段,实践阶段最好能够在实习岗位上来完成,一方面实习岗位能够提供场景支撑,另一方面在实习岗位上也更容易与有经验的技术人员进行交流学习。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言,或者私信我!
大数据可以自学,有Java开发经验的童鞋可以挑战一下。大数据主要学习三个平台Hadoop、Spark、Storm。不过因为大数据技术体系庞大复杂,不同的就业方向使用的技术差异也比较大,加之作为比较新的技术网上的学习资源很少,自学难度大,零基础建议报班培训学习。
推荐书籍:
《Effective Java中文版》
《Big Data》
《Hadoop权威指南》
《Hive编程指南》
《Learning Spark》
《Spark机器学习:核心技术与实践》
自学大数据可以学习哪些内容?有哪些书籍推荐?
大数据学习可以从最基础的java语言入手,然后去学习Linux&Hadoop生态体系,一些分布式的技术理念,再然后就是学习机器学习,深度学习算法。
阶段一、大数据基础——java语言基础方面
(1)Java语言基础
Java开发介绍、熟悉Eclipse开发工具、Java语言基础、Java流程控制、Java字符串、Java数组与类和对象、数字处理类与核心技术、I/O与反射、多线程、Swing程序与集合类
(2)JavaWeb和数据库
数据库、JavaWeb开发核心、JavaWeb开发内幕
推荐书籍:
《Effective Java中文版》(第2版)
这本书是学习java必备书籍,看完这本书也就掌握了入门的基础知识。
阶段二、 Linux&Hadoop生态体系
到此,以上就是小编对于用什么系统建站的问题就介绍到这了,希望介绍关于用什么系统建站的1点解答对大家有用。